
Concept Programming
The Art of Turning Ideas into Code

Christophe de Dinechin,
christophe@dinechin.org

TM

mailto:christophe@dinechin.org
mailto:christophe@dinechin.org

Problem statement
Dealing with Ever Increasing Software Complexity

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Python, XML
Prebuilt components

Co
m

m
od

ity

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Python, XML
Prebuilt components

Co
m

m
od

ity

Tools

Pro
blem

s

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Python, XML
Prebuilt components

Co
m

m
od

ity

Tools

Pro
blem

s
Comfortable
Cheap
Fast

Slow
Tedious

Expensive

Primary
Use:

Exponential Growth

Software complexity
follows Moore’s law

Driven by customers,
not by programmers

Programmers brains
can’t keep up

Result: periodic
paradigm shifts...

... obsoleting all the
legacyTime

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Python, XML
Prebuilt components

Co
m

m
od

ity

Tools

Pro
blem

s
Comfortable
Cheap
Fast

Slow
Tedious

Expensive

You Are Here

Primary
Use:

Staying Ahead of Moore’s Law

Time

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Python, XML
Prebuilt components

Co
m

m
od

ity

Can we integrate new
paradigms
incrementally?

YES

Can we select the best
representation
independently for any
given concept?

YES

Staying Ahead of Moore’s Law

Time

C
om

pl
ex

ity

Fortran, Basic
Symbols and Expressions

Co
m

m
er

cia
l

Pascal, C
Structured programing

Pe
rs

on
al

C++
Objects

Gra
ph

ica
l

Java
Multiple Machines

Dist
rib

ut
ed

Python, XML
Prebuilt components

Co
m

m
od

ity

Can we integrate new
paradigms
incrementally?

YES

Can we select the best
representation
independently for any
given concept?

YES

XL
Concept programming

Software Complexity

Scale Complexity
Millions of Objects, Billions of Bits

Domain Complexity
Ever Needed “X-Ray Spectrography for Dummies?”

Artificial Complexity
C++ Standard: >700 pages, highly technical

Business Complexity
Deliver this Yesterday, No Budget

The Belief in the Best Paradigm

“Everything is an object”
In Smalltalk, 2+3*5=25, not 17

Object 2 gets message + with arg 3

“Everything is a function”
Functional languages: Lisp, OCaml
But the computer doesn’t think that way

... and neither do many of us☺

A Simple Example
How Can We Can Get Stuck so Easily?

Computing a Maximum

Mathematical Definition is Well Known
Compares elements with an order relation
Max(a1, a2, ..., an)

Not Exactly a New Problem in Computing

That Ought to be Easy!

Maximum in C

Generally Defined as a Macro
Something like: #define max(x,y) ((x) < (y) ? (y) : (x))

Or maybe: #define max(x,y) ((x) >= (y) ? (x) : (y))

Some interesting questions
Why all the Parentheses?

What About Side Effects in max(f(a++),c--)?

What about max(x,y,z,t)?

Maximum in C

Generally Defined as a Macro
Something like: #define max(x,y) ((x) < (y) ? (y) : (x))

Or maybe: #define max(x,y) ((x) >= (y) ? (x) : (y))

Some interesting questions
Why all the Parentheses?

What About Side Effects in max(f(a++),c--)?

What about max(x,y,z,t)?
F a i l

e d !

Maximum in Java (using functions)

Defined in java.lang.Math as overloaded functions
You get max(int,int), max(long, long), ...

We got rid of side effects!
But what about max(x,y,z,t)?

What about max("Hello", "World")?

What about max(1, 2.5)?

Maximum in Java (using functions)

Defined in java.lang.Math as overloaded functions
You get max(int,int), max(long, long), ...

We got rid of side effects!
But what about max(x,y,z,t)?

What about max("Hello", "World")?

What about max(1, 2.5)?

F a i l
e d !

Maximum in Java (using Objects)

Defined in java.util.Collections as generic function
When Java looks up to C++, you get:
public static <T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

Hey, we can now compare more than 2 things!
But why can't we write max(x,y,z,t)?
Why should we create a collection to start with?

Why e1.compareTo(e2)<0 and not e1 < e2?

Throws ClassCastException or NoSuchElementException

Maximum in Java (using Objects)

Defined in java.util.Collections as generic function
When Java looks up to C++, you get:
public static <T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

Hey, we can now compare more than 2 things!
But why can't we write max(x,y,z,t)?
Why should we create a collection to start with?

Why e1.compareTo(e2)<0 and not e1 < e2?

Throws ClassCastException or NoSuchElementExceptionF a i l
e d !

Maximum in Lisp or Scheme

Defined as variadic function
Scheme: (define (max . a) (if (null? a) (error) (max-list a))

Much closer to an acceptable definition
Syntax is Natural for Lisp: (max 1 2 3 5)

Still fails at run-time in same cases as Java

Maximum in Lisp or Scheme

Defined as variadic function
Scheme: (define (max . a) (if (null? a) (error) (max-list a))

Much closer to an acceptable definition
Syntax is Natural for Lisp: (max 1 2 3 5)

Still fails at run-time in same cases as Java

F a i l
e d !

Why Can't We Get It Right?

That Ought to be Easy! But it's Hard
That simple problem is not solved after 30+ years

There is a gap between:
Concepts, in your head
Representations of concepts, in the code

Concept Programming is all about this gap

General Ideas
Applying Concept Programming

What is Concept Programming?

Code represents concepts
Reality: Shape, File, Credit, Shotgun
Organization: Function, Visitor, Aspect
Focus on concepts relevant to the program

Make the code “look like” the concept
Similarity in structure, behavior, locality
Principle of least surprise

Domains

Concept and Code live in
separate domains

Concepts: Environment,
Organization, Algorithms,
Pictures
Code: Source, Object, Data,
Instructions, Bitmaps

Unlike objects or functions,
you won’t find “concepts” in
the code, only concept
representations

Concept

Code

Bridging the Gap

Turning Concepts into Code
is a lossy conversion

This is true with any language,
any paradigm
No two people have exactly the
same concept in mind

Minimizing the loss remains
a worthy goal

Concept

Code

What is a “Concept”?

An entity in the problem space...
Cars, Error Messages, Connections
An object is only one possible representation

... that is relevant to the code space
What will it be used for? How do we represent it?
Relevant here, irrelevant there

The set of concepts is not constrained

Minority Paradigms

The set of concepts is infinite...
Special concepts can make life easier

Minority paradigms to fill the void
Logic programming, design by contract

To each its (incompatible) language!
Prolog, Eiffel

Not minor in usefulness
But the majority can't use them

Limitations of the Tools

Many notations are difficult to add
Symbolic differentiation
GUI Elements
Debug-only code

We Need a Concept Programming Language
But a lot can be done without

Pseudo Metrics
Identifying Non-Obvious Problems in the Code

Pseudo-metrics

Syntactic Noise
Form that doesn’t map to the problem space

Semantic Noise
Meaning that doesn’t map to the problem space

Bandwidth
How much of the problem space is covered?

Signal/Noise Ratio
How much code actually deals with real problems?

Pseudo-metrics

Syntactic Noise
Form that doesn’t map to the problem space
Useless and potentially distracting visual clutter

C: if (a == 3) { printf("Hello\n"); }

C++: list<list<int> > l; // Watch that space!

HTML: When N < 0, N is said to be negative

Pseudo-metrics

Semantic Noise
Meaning that doesn’t map to the problem space
Unexpected behavior compared to “native” concept

C: if (x = 0) y = max(f(), x);	 	 Zeroes x, calls f twice

C++: object.GetBounds(&rect);	 Exposes two addresses

Smalltalk: 2+3*5

 25 instead of 17

Pseudo-metrics

Bandwidth
How much of the problem space is covered?
Conditions reuse in different cases

C: int max(int x, int y);	 	 	 	 	 vs. macro

C++: cout << complex(2.3, 5.2);		 vs. printf

Ada: accept Help (X : item) do...		 vs. pthreads

Pseudo-metrics

Signal/Noise Ratio
How much code actually deals with real problems?
The rest is mostly useless fluff...

Java:
class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Metrics: Keep in Mind

These are pseudo metrics
You can’t measure things in the problem space
Highly subjective metrics
You can’t write a tool to measure them

Analogy to Music
Reducing noise is a worthy goal...
But you cannot completely eliminate it
Noise to one, music to the other

Abstraction
Fighting Complexity by Reducing it to Tiny Bits

Abstractions

Code is a particular concept abstraction

This abstraction is necessary
You can’t run ideas in a computer

But: Abstractions introduce distortions
What you think is not what you get
Abstraction penalty, inefficiency in generated code

Abstraction Loss: Concept Cast

Replacing a concept with a related one
Often to workaround limits of the tools

Example: replace f(x,y,z,...) with f(list)

Too often an unconscious decision
It works!

Maybe the most frequent abstraction loss
You lose some semantic signal...
... while introducing a lot of noise

Abstractions vs. Complexity

Domain: Equivalence, aka least surprise
Programmers read FILE and think “file”

Scale: Layering and reuse
FILE can be reused, e.g. to build DATABASE

Artificial: Hide irrelevant details
You can safely ignore all the OS magic behind FILE

Business: Manageability, predictability
FILE behavior is reliable, portable, documented

Step by Step

Define the problem space

Identify individual concepts

Document concept behaviors & relations

Choose notation for each concept

Select or invent representation

XL: An Extensible Language
Applying Concept Programming to Language Design

Considering Metrics

Syntactic Noise
if A < 3 then IO.WriteLn "A=", A

Semantic Noise
to GetBounds(O : object; out R : rectangle)

Bandwidth
function Max(x: ordered; ...) return ordered
X : integer := Max(1, 3, 7, 2, 4)

Signal/Noise Ratio
type complex with
	 Re, Im : real

Extensibility

Symbolic differentiation
Standard notation:

XL notation: {differentiation} d/dx(sin(x+1/x))

Compiler plug-ins implement extensions
Plug-in code uses specific extensions:
translation differentiation

 when (d/'dvar'('expr')) where BeginsWithD(dvar) then ...

d

dx
sin(x + 1

x
)

1

Extensibility benefits

Represent arbitrary concepts
Favors “natural” notations in the code
Unifies “user” and “built-in” entities
Leaves the computer to do the grunt work

XL Concept-inspired Features

Expression reduction
True and validated generic types
Type-safe variable argument lists
Iterators and generators

All used to build “standard” elements

XL Concept-inspired Features

Expression reduction
Generalizes operator overloading
Efficient matrix linear algebra
function MultiplyAdd(A, B, C : matrix) return matrix

 written A*B+C

Easy special cases
function IsIdentity(M : matrix) return boolean

 written M = 1

XL Concept-inspired Features

True generic types
Make functions implicitly generic
Array operations
function Add (A, B : array) return array written A+B

Pointer operations
function Peek(P : ptr) return ptr.item written *P
to Poke(P : ptr; V : ptr.item) written *P := V

XL Concept-inspired Features

Validated generic types
Specify interface of a generic type
Type with an order operation
generic type ordered where

 A, B : ordered

 // Code testing the

 Test : boolean := A < B

 // candidate types

Makes generic code more robust
function Min (X : ordered) return ordered
Z : complex := Min(Z)

 // Error (unlike C++)

XL Concept-inspired Features

Type-safe variable argument lists
A user-defined Pascal-style WriteLn:
to WriteLn(...) is

 // ... stand for rest of args

 Write ...

 // Pass rest of args

 Write new_line

Min and max functions that work:
function Min(X : ordered; ...) return ordered is

 result := Min(...)

 if X < result then

 result := X

XL Concept-inspired Features

Iterators and generators
Define iterator over a range of integers
iterator It(var out C : T; L,H: T)
written C in L..H is

 C := L
	 while C <= H loop

 yield

 C += 1

Used in for loops (and implements for loops)
for K in 3..5 loop
	 WriteLn "K=", K

Maximum in XL

generic type ordered where
 A, B : ordered
 Test : boolean := A < B

function Max (X : ordered) return ordered is
 return X

function Max (X : ordered; ...) return ordered is
 result := Max(...)
 if result < X then
 result := X

Maximum in XL

generic type ordered where
 A, B : ordered
 Test : boolean := A < B

function Max (X : ordered) return ordered is
 return X

function Max (X : ordered; ...) return ordered is
 result := Max(...)
 if result < X then
 result := X

Pas
s

Bridging the Gap: Done?

Turning Concepts into Code
is a lossy conversion

This is true with any language,
any paradigm
No two people have exactly the
same concept in mind

Minimizing the loss remains
a worthy goal

XL does this better ☺

Concept

Code

Concept Programming
The Art of Turning Ideas into Code

!ank y"
!

TM

Christophe de Dinechin,
christophe@dinechin.org

mailto:christophe@dinechin.org
mailto:christophe@dinechin.org

